
Day 3: Introduction to R scripting

Jerry Davison and Martin Morgan

Contents

1 What is a script? 1

2 Motivation: scripts are valuable because they’re: 2

3 Writing your own functions 2

4 R programming functions 2
4.1 apply . 3
4.2 lapply . 3
4.3 sapply . 4
4.4 if . 5
4.5 for . 6

5 Good practices 7

6 An example script 8

7 Advanced 8

8 Bioconductor and CRAN packages 8

9 Resources 9

1 What is a script?

A script is a text file containing R commands on separate lines; commands will be sequentially executed from the top of
the file downward, for example:

x = 2 + 2

cat(x, '\n')

x = 7

will print the number 4. To execute a script myScript.R that you’ve written, in an R session enter the command
source('myScript.R'). Scripts’ greatest value may be that they assist you in generating REPRODUCIBLE RESULTS.

When you execute a script it produces the same result each time it is run – when its starting conditions such as
input files remain the same. This characteristic can bring welcome relief if your project or complex analysis has to be
recapitulated with a small change a year after its completion.

1

Day 3: Introduction to R scripting 2

2 Motivation: scripts are valuable because they’re:

� reproducible – share the script and its results with colleagues !
� re-usable – analyze additional input files with one command !!
� extensible – never again start related analyses from scratch !!!
� reliable – no danger of typing x/y when you meant x*y !!!!

3 Writing your own functions

So far we’ve used mainly functions that are natively available in R, like mean() and plot(). A powerful capability R and
other programming languages provide is creating – that is, writing – functions yourself. For example:

matrixMaker <- function(m, n) {

x = matrix(floor(runif(m*n, min=0, max=10)), nrow=m, ncol=n)

colnames(x) = LETTERS[1:n]

rownames(x) = 1:m

return(x)

}

matrixMaker(4,3) # 4 rows, 3 columns

A B C

1 4 5 9

2 8 8 4

3 9 5 6

4 0 4 5

This function does several things in succession: (1) it creates a mXn matrix of integers uniformly distributed from 0
to 9, (2) assigns row and column names to the matrix, and (3) returns the matrix as the value of the function. Functions
have a specific syntax, with zero to many arguments, a body, and a return value. In general, variables created inside a
function body are not known outside of the function. We recommend functions as they:

� perform identical operations to different data
� guide you to thinking in structured modules
� can help you simplify a complex algorithm

Exercise: write a function that takes as its input arguments two numbers, multiplies them together, then finds the
square root of their product, and returns a list with elements 1) the two numbers as a vector, 2) their product and 3) its
square root. Name the elements of that list with the third, first and 20th letters of the alphabet. Execute the function
twice, the first time with input values 3 and 18, the second time with values 42 and negative 9.

4 R programming functions

R provides additional resources for scripting. We’ll cover a few in detail here – see Table 1 for others you may find useful.
Let’s first create a matrix we’ll use as a test subject:

set.seed(11)

mx = matrixMaker(10,5)

mx

A B C D E

1 2 1 2 5 2

2 0 4 6 3 2

3 5 9 3 4 4

Day 3: Introduction to R scripting 3

4 0 8 3 2 6

5 0 7 0 8 3

6 9 5 4 6 8

7 0 4 3 2 6

8 2 3 0 1 0

9 8 1 1 2 5

10 1 4 3 0 8

4.1 apply

Use ’apply’ to operate on rows or columns individually

apply(mx, 1, sum) # sum values for each 'sample' 1 through 10

1 2 3 4 5 6 7 8 9 10

12 15 25 19 18 32 15 6 17 16

apply(mx, 2, sum) # sum values for each 'experiment' A through E

A B C D E

27 46 25 33 44

Create an on-the-fly function for a more complex evaluation

apply(mx, 2, function(x) length(which(x!=0))) # count column non-zero values

A B C D E

6 10 8 9 9

4.2 lapply

Similar to ’apply’ but operates on lists: first let́s generate a list

mxl = list(A=mx[,'A'], B=mx[,'B'], C=mx[,'C'], D=mx[,'D'], E=mx[,'E'])

mxl

$A

1 2 3 4 5 6 7 8 9 10

2 0 5 0 0 9 0 2 8 1

$B

1 2 3 4 5 6 7 8 9 10

1 4 9 8 7 5 4 3 1 4

$C

1 2 3 4 5 6 7 8 9 10

2 6 3 3 0 4 3 0 1 3

$D

1 2 3 4 5 6 7 8 9 10

5 3 4 2 8 6 2 1 2 0

$E

1 2 3 4 5 6 7 8 9 10

2 2 4 6 3 8 6 0 5 8

use 'lapply' on a 'L'-ist

lapply(mxl, sum) # total score for each exp A through E

Day 3: Introduction to R scripting 4

$A

[1] 27

$B

[1] 46

$C

[1] 25

$D

[1] 33

$E

[1] 44

lapply(mxl, function(x) length(which(x!=0))) # num. samples with value != 0

$A

[1] 6

$B

[1] 10

$C

[1] 8

$D

[1] 9

$E

[1] 9

lapply(seq(along=mxl), function(k) sum(mxl[[k]]))

[[1]]

[1] 27

[[2]]

[1] 46

[[3]]

[1] 25

[[4]]

[1] 33

[[5]]

[1] 44

Particular utility of a list -- collect objects of different classes

mxl2 = lapply(seq(ncol(mx)), function(k) list(mx[,k], paste('Sample', LETTERS[k])))

names(mxl2) = tolower(colnames(mx))

4.3 sapply

The class of result differs between ’lapply’ and ’sapply’

Day 3: Introduction to R scripting 5

lapply(mxl, sum)

$A

[1] 27

$B

[1] 46

$C

[1] 25

$D

[1] 33

$E

[1] 44

sapply(mxl, sum) # Operate on list

A B C D E

27 46 25 33 44

sapply(mxl, sum, simplify=FALSE)

$A

[1] 27

$B

[1] 46

$C

[1] 25

$D

[1] 33

$E

[1] 44

sqrt(sapply(mxl, sum)) # Continue with additional operations

A B C D E

5.196152 6.782330 5.000000 5.744563 6.633250

4.4 if

The ’if’ statement assesses whether a statement is true, and acts based on that:

if(any(mx==0)) cat('Some values are zero!\n')

Some values are zero!

if(all(mx!=0)) cat('<NO> values are zero!\n')

if (any(mx==0)) cat('Some values are zero!\n') else cat('<NO> values are zero!\n')

Some values are zero!

Day 3: Introduction to R scripting 6

if (any(mx==0)) {

msg = 'Some values are zero!'

cat(msg, '\n')

} else {

msg = '<NO> values are zero!'

cat(msg, '\n')

}

Some values are zero!

Scope of variables assigned within 'if' includes the parent environment:

msg

[1] "Some values are zero!"

4.5 for

The scope of variables assigned within ’for’ also includes the parent environment:

for (k in seq(ncol(mx))) {

u = unique(mx[,k])

len = length(u)

}

But!

u

[1] 2 4 6 3 8 0 5

len

[1] 7

Be careful :)

u = vector('list', ncol(mx))

len = vector('integer', ncol(mx))

#

for (k in seq(ncol(mx))) {

u[[k]] = unique(mx[,k])

len[k] = length(u[[k]])

}

names(u) = names(len) = colnames(mx)

u

$A

[1] 2 0 5 9 8 1

$B

[1] 1 4 9 8 7 5 3

$C

[1] 2 6 3 0 4 1

$D

[1] 5 3 4 2 8 6 1 0

$E

[1] 2 4 6 3 8 0 5

Day 3: Introduction to R scripting 7

len

A B C D E

6 7 6 8 7

Table 1: A selection of R functions
dir, read.table (and friends), scan List files in a directory, read spreadsheet-like data into

R, efficiently read homogeneous data (e.g., a file of numeric values) to be represented as a
matrix.

c, factor, data.frame, matrix Create a vector, factor, data frame or matrix.

summary, table, xtabs Summarize, create a table of the number of times elements occur in a
vector, cross-tabulate two or more variables.

t.test, aov, lm, anova, chisq.test Basic comparison of two (t.test) groups, or several
groups via analysis of variance / linear models (aov output is probably more familiar to
biologists), or compare simpler with more complicated models (anova); χ2 tests.

dist, hclust Cluster data.

plot Plot data.

ls, str, library, search List objects in the current (or specified) workspace, or peak at the
structure of an object; add a library to or describe the search path of attached packages.

lapply, sapply, mapply, aggregate Apply a function to each element of a list (lapply,
sapply), to elements of several lists (mapply), or to elements of a list partitioned by
one or more factors (aggregate).

with Conveniently access columns of a data frame or other element without having to repeat
the name of the data frame.

match, %in% Report the index or existence of elements from one vector that match another.

split, cut, unlist Split one vector by an equal length factor, cut a single vector into intervals
encoded as levels of a factor, unlist (concatenate) list elements.

strsplit, grep, sub Operate on character vectors, splitting it into distinct fields, searching for
the occurrence of a patterns using regular expressions (see ?regex, or substituting a string
for a regular expression).

install.packages Install a package from an on-line repository into your R.

traceback, debug, browser Report the sequence of functions under evaluation at the time of
the error; enter a debugger when a particular function or statement is invoked.

5 Good practices

To increase their value to you, work towards building scripts that are

� readable – organize related commands into blocks separated by vertical space. Use comments freely – text on any
line after a ’#’ is ignored by R. Indent commands in entering nested levels of control and reverse the indentation
after exiting them.

� modular – put functions you write in separate files and source() them in scripts that use the functions.
� maintainable – variable and file names are meaningful, projects are in separate directories: create a set of directories

in a project directory.

For example you may create a folder or directory RNAseq and under that the following folders or directories:

Subdirectory/Folder Can contain

data Data files created during the analysis (.rda for example)
extdata Data files available at the start of the analysis (.txt for example)
R R script files that only contain R functions you or others wrote
script R script files with analyses that may call functions in the R directory
doc Documents and similar files

Day 3: Introduction to R scripting 8

6 An example script

filename: little_script.R

#

Example script illustrating good practices

#

jdavison & mtmorgan

#

-> source('little_script.R', echo=TRUE, max=Inf)

#

Scatter plot with title, "toFile" and ... passed as arguments

plotIt <- function(x, y, main='', toFile=FALSE, ...) {

if(toFile) pdf(file='myPlot.pdf')

plot(x,y, type='o', main=main, ...)

abline(h=0, lty=3,col='blue')

abline(v=0, lty=2, col='red')

if(toFile) invisible(dev.off())

}

Use defaults

x = 0:20/pi

y = sin(x)

plotIt(x,y)

Specify title

x = seq(0,10,0.1)

y = x^2*exp(-x)

plotIt(x,y, main='Exponential function')

Write to file, specify additional plot options

zed = seq(0,20,0.1)/pi

plotIt(sin(2*zed), cos(3*zed), main='Lissajous figure a:b = 2:3',

toFile=TRUE, pch=22, lwd=3, col='orange')

7 Advanced

If a function you write or use produces an error message when you run it, or not what you expect, use the debugger to
help you understand what is happening inside the function:

debug(plotIt)

x = -5:5

y = log(abs(x))

plotIt(x, y)

8 Bioconductor and CRAN packages

There are many packages available to address both general needs, like the limma package, and more specific ones like
edgeR. Bioconductor and CRAN packages can be downloaded and added to your R environment with the following
commands:

source('http://bioconductor.org/biocLite.R')

biocLite('edgeR') # For example

library(edgeR)

http://bioconductor.org/packages/2.10/bioc/html/limma.html
http://bioconductor.org/packages/2.10/bioc/html/edgeR.html
http://bioconductor.org/
http://cran.r-project.org/

Day 3: Introduction to R scripting 9

9 Resources

� The Art of R Programming, Matloff
� The Wikipedia R entry
� workflow ideas
� Much more documentation is available at CRAN – be sure to see the Manuals, FAQS and Contributed links.

options(prompt='> ', continue='+ ')

http://www.amazon.com/The-Art-Programming-Statistical-Software/dp/1593273843
http://en.wikipedia.org/wiki/R_(programming_language)
http://stackoverflow.com/questions/1429907/workflow-for-statistical-analysis-and-report-writing
http://cran.r-project.org/

	1 What is a script?
	2 Motivation: scripts are valuable because they're:
	3 Writing your own functions
	4 R programming functions
	4.1 apply
	4.2 lapply
	4.3 sapply
	4.4 if
	4.5 for

	5 Good practices
	6 An example script
	7 Advanced
	8 Bioconductor and CRAN packages
	9 Resources

